Importance of Illicit Discharges

Lake County Stormwater Management Commission

Lori Lilly

Center for Watershed Protection

Watershed Ecologist/Planner

March 20, 2012

Discharge Flow Types

- Pathogenic & toxic discharges
 - Sanitary wastewater
 - Commércial & Industrial discharges
- Nuisance & aquatic life threatening discharges
 - Landscaped irrigation runoff
 - Construction site dewatering
 - Automobile washing
 - Laundry wastes
- Unpolluted discharges
 Infiltrating groundwater
 Natural springs

 - Domestic water line leaks

Sewage Discharges

- In urban areas, these may be a bigger problem than previously realized
- ▶ Baltimore has spent millions on wet weather repairs to address SSOs the repairs have had little effect on dry weather water quality (CWP 2011)
- Kaushel et al (2011) found that sewage was the predominant source of nitrogen load during baseflow, even after repairs to the wastewater system were complete

Percentage of Total E.coli in Sligo Creek Outfalls

- Suspect Outfalls
- "Clean" outfalls
- □ Obvious Sew age Discharge

Findings from recent studies

▶ 27-40% of outfalls have dry weather flow

Pollutant accounting

- Local TMDLs nutrients and bacteria
- Chesapeake Bay TMDL (largest TMDL ever - 6 states and the District)
- MS4 permits
- Consent decrees
- Safe Drinking Water Act
- CWA Antidegradation Policy

Initial Total Nitrogen Load estimate: 5 lb/day

April 19, 2011

Petroleum smell

Ammonia: 0.27 mg/l

E. coli: 13,200 CFU/100 ml

- Obvious should be fixed ASAP
- Old combined sewer; some sewer separation was overlooked
- •300K to fix

Two flows – both very contaminated – one continuous sewage, the other intermittent industrial

Recent Watershed Studies

Outfall Reconnaissance Inventory (ORI) Quantitative Assessment

	Parameters Analyzed
In the field	Ammonia
Sample 1	Fluoride
	Anionic Surfactants
	Potassium
Sample 2	Total Nitrogen
	Total Phosphorus
Sample 3	E. coli and Total coliform

Nitrogen TMDL Load Reduction Estimates for Western Run

*Based on load assumptions derived from CWP, 2008 and Phase I Watershed Implementation Plan estimates for the Chesapeake Bay TMDL.

Center for Watershed Protection

Estimated percent of required total nitrogen reduction that can be met through removal of illicit discharges in Western Run

*Illicit discharge load estimates based on single grab sample

*Based on load assumptions derived from MDE, 2006.

Estimated percent of required bacteria reduction that can be met through removal of illicit discharges in Western Run*

*Illicit discharge load estimates based on single grab sample

Illicit discharge elimination is a cost effective approach to nutrient management

- *Assumes 50K per repair for 47 repairs
- **Assumes 100% of the water quality volume provided by treating 1" of rainfall

Take Home Points

- IDDE can play a significant role in helping to meet TMDL requirements
- ▶ IDDE is a cost effective strategy to meet pollution load reduction targets
- Finding and removing illicit discharges can require significant coordination and persistence but can result in significant water quality improvement

Q/A

